Heraeus Materials, 혁신적인 전도성 고분자 투명전극 공개

Heraeus Materials Korea의 김진환 팀장

12월 17일 열린 ‘2016년 유연 투명전극 및 필름 소재별 제조/공정 기술개발과 적용사례 세미나’에서 Heraeus Materials Korea의 김진환 팀장은 ‘전도성 고분자 기반 유연 투명전극 제조 및 공정 기술개발 동향과 적용사례’라는 제목의 강연을 통해  Heraeus의 대표적인 투명 전극 시리즈인 ‘Clevios’의 새로운 제품을 선보였다.

80% 이상의 고투명도와 면저항 500Ω/ㅁ 이하의 전도도를 가져 OLED 전극 등 디스플레이에 전자 부품으로 사용되는 투명전극은 크게  금속박막과  carbon allotrope, 전도성 고분자 세 종류로 나누어진다. Heraeus Materials는 SKC와 함께  전도성 고분자를 생산하는 대표적인 업체로 꼽힌다.

김 팀장은 많은 사람들이 Heraeus를 금괴와 은괴, 설비 금속 등을 생산하는 업체로 알고 있지만 현재는 디스플레이와 반도체 관련 chemical에 집중하고 있다고 설명하며 특히 대표적인 제품인 ‘Clevios’에는 20년 이상의 PEDOT 성분에 대한 노하우와 경험이 담겨있다고 발표했다.

기존 PEDOT:PSS 제품인 ‘Clevios™ P’는 독일 레버쿠젠에서 대부분 생산하며 기본적으로 열경화를 사용한다. 김 팀장은 ‘Clevios™ P’에 대해 “코팅 시 bluish한 색을 내며 두께에 따라 그 정도가 바뀐다.” 고 밝히며 전도성은 1000S/cm을 가지며 유리와 비슷한 굴절율을 가진다고 발표했다.

김 팀장은 기존 ‘Clevios’제품은 플렉시블 제품에 적용되기 충분한 연신율을 가지고 있지만 미래의 플렉시블 디스플레이에서는 더 높은 사양의 투명 전극이 요구되기 때문에 새로운 제품 개발이 중요하다고 하며 신제품인  ‘Clevios™ HY’를 소개했다.

‘Clevios™ HY’는 기존 ‘Clevios’ PEDOT:PSS 제품에 고전도성 투명전극인 Ag nano wire를 결합한 원리를 통해 개발되었다. Ag nano wire는 기본적으로 표면이 rough하기 쉬운데 이를 ‘Clevios’ PEDOT:PSS가 flat하게 만들어 보완해준다. 또한 유연성이 강하며 100Ω/ㅁ미만의 상대적으로 낮은 면저항을 가지고 있는 것이 특징이다. 김 팀장은 “특히 이번 신제품은 solvent base화하여 프린팅 공정에 쓰일 수 있다.”고 강조하며 ‘Clevios™ HYJET’라는 이름의 프린팅 공정 전용 PEDOT:PSS 투명전극을 개발 중에 있다고 밝혔다.

UNIST 박장웅 교수, 투명전극의 현재와 미래에 대해 논하다.

11월 26일 개최된 ‘2015 국제 신소재 및 응용기술전참관 및 그래핀 투명전극 소재 별 기술 개발 동향 및 발전방향 세미나’에서 울산과학기술대학교 박장웅 교수는 ‘그래핀과 Ag nano wire의 복합체를 이용한 고기능 유연투명전극 기술 개발동향 및 발전방향’이라는 주제로 투명전극에 대한 신기술과 개발 성과 등에 대한 심도 있는 강연을 했다.

투명전극은 통상 80% 이상의 고투명도와 면저항 500Ω/ㅁ 이하의 전도도를 가지는 전자 부품으로 LCD 전면 전극, OLED 전극 등 디스플레이, 터치스크린, 태양전지, 광전자 소자 등 전자분야에 광범위하게 사용되는 기술이다.

박교수는 투명전극의 주된 시장은 디스플레이와 터치스크린이라고 설명하며 2015년 US$3,400million 규모인 투명전극 시장이 2020년에는 US$4,800million까지 성장할 것으로 전망된다고 발표했다.

현재 주로 채용되고 있는 전극재료는 증착법이나 sputtering에 의해 제조되는 ITO(Indium Tin Oxide) 필름이다. ITO는 면저항이 낮아 전기전도성이 우수하고 대량생산에 적합하다는 장점이 있다. 하지만 주원료인 인듐이 중국에서 독점하고 있는 희소성이 있는 물질이며, 공정온도가 높다는 단점이 있어 대체물질을 찾기 위한 연구가 지속되고 있다.

이런 연구를 통해 그래핀과 CNT(Carbon Nano Tube), Ag nano wire, metal mesh 등이 ITO를 대체할 수 있는 물질로 각광받고 있다. 하지만 박교수는 현재 개발되고 있는 투명전극들은 전기적 광학적 특성 등에서 ITO를 넘어서기 힘들다고 강조했다. 대신 디스플레이의 형태가 변화됨에 따라 ITO가 사용될 수 없는 형태의 디스플레이에 대체 물질이 쓰일 수 있을 것이라고 설명했다.

현재 ITO는 평면 디스플레이의 주요 전극 재료로 쓰이고 있다. 하지만 mechanical stress에 취약하기 때문에 유연성에 한계가 있어 플렉서블 디스플레이에 적용되기 힘들 것이라는 시각이 있었다. 이와 관련해 박교수는 “디스플레이의 곡률반경에는 ITO의 특성보다 기판의 두께가 더 중요한 요소이기 때문에 기판의 두께가 얇아진다면 플렉서블 뿐만 아니라 폴더블 디스플레이에도 ITO가 충분히 적용될 수 있을 것이다.”라며 “구부려지는 것은 상관없지만 문제는 잡아당길 때 특성이 파괴되기 때문에 stretchable 디스플레이가 불가능하다.”고 밝혔다.

박교수는 smartwatch를 포함한 wearable 디스플레이 시장이 성장하기 위해서는 사용자가 느끼는 착용감이 중요하다고 강조하며 “사람의 인체는 곡률반경이 정해져 있지 않기 때문에 기존 wearable 디스플레이의 착용감을 높이기 위해 다양한 축의 구부림이 가능한 stretchable 패널 적용이 필수적이며 이를 위해서 ITO를 대체할 수 있는 투명전극이 필요하다.”고 발표했다.

예를 들어, 시계 형태의 애플리케이션은 손목을 감는 스트랩 부분까지 stretchable 디스플레이로 대체할 수 있으며, 안경 형태의 애플리케이션은 렌즈와 같은 곡면 부위에도 stretchable 디스플레이를 적용할 수 있다. 또한 섬유산업에서도 스마트 섬유라는 개념으로 전자회로화 할 수 있는 연구가 속속 선보이고 있다.

박교수는 ITO를 대체하는 투명전극에 대한 연구결과로 그래핀과 Ag nano wire의 복합 구조체를 제시하였다. Ag nano wire는 그래핀의 높은 면저항을 낮추어주는 역할을 하고 그래핀은 Ag nano wire의 산화를 막는 역할을 하기 때문에 서로 상호보완적인 관계가 될 수 있다고 설명했다. 또한 박교수는 연구를 통해 90%이상의 투과율과 30Ω/ㅁ이하의 면저항을 달성했다고 밝히면서 “특히 stretchability를 100%까지 높였기 때문에 stretchable 디스플레이에 적용하기 적절하다.”고 강조했다.

박교수는 해당 투명 전극은 디스플레이뿐만 아니라 투명 stretchable 센서와 투명 TFT 등에도 적용할 수 있다고 밝히며 이와 관련된 연구도 지속하고 있다고 하며 발표를 마쳤다.