투명전극, 차세대 디스플레이 도약을 위한 개발이 필요

최근 투명전극에 대한 여러 연구성과들이 발표되며 차세대 투명전극에 대한 관심이 높아지고 있다.

12월 초 UNIST는 Ag nano wire를 원하는 기판에 원하는 방향으로 정렬시키는 인쇄기술을 개발했다. Ag nano wire는 플렉서블 터치패널과 디스플레이 제품에 대면적으로 생산이 가능한 투명전극으로 이번에 개발한 기술은 기존 인쇄공정에 나노기술을 접목하여 표면을 매끄럽게 하고 투명도를 높였다.

비슷한 시기 ETRI는 OLED 기판 위의 얇은 금속전극을 그래핀 투명전극으로 대체하는 기술을 개발했다. 그 동안 OLED에 사용하던 금속전극은 주로 은(Ag)소재였지만 내부광에 의한 반사로 각도에 따라 시야각이 바뀌는 문제가 있었다. 또한 외부광에 의해서도 반사로 인해 화질에 영향을 주었다. 이번에 개발한 기술은 내/외부광에 대한 반사가 거의 없는 그래핀을 투명전극으로 적용해 투명도와 화질을 개선했다.

현재 투명전극 물질로 ITO(Indium Tin Oxide)가 가장 널리 사용되고 있지만 자원량에 한계가 있고 플렉서블 전자소자에 적용되는데 한계가 있어 이를 대체할 수 있는 새로운 물질 개발에 대한 요구가 크게 증가하고 있다. 특히 stretchable 소자에는 ITO가 동작하지 않기 때문에 차세대 투명전극의 개발은 미래 디스플레이에 핵심적인 요소로 보인다.

여의도 사학연금회관에서 17일 개최된 ‘2016년 유연 투명전극 및 필름 소재 별 제조/공정 기술개발과 적용사례 세미나’에서 KIST(한국과학기술연구원)의 김원목 박사는 ‘투명 전도성 산화물(TCO) 기반 유연 투명전극 제조 및 공정 기술개발동향과 적용사례’라는 제목의 강연을 통해 여러 유연 투명전극들 중 TCO에 대한 제조와 공정기술에 대해 발표했다.

투명 전도성 산화물이란 전기 전도도를 가지면서 광학적으로 투명한 물질 중 oxide(산소)가 함유된 물질을 말한다. 투명 전도성 재료 중 산화물은 가장 오래 연구가 진행되었으며 투명전극 재료로 널리 쓰이는 물질이다. Oxide가 함유된 전도성 물질은 광학적인 bandgap이 3.0eV이상으로 크기 때문에 투과율이 높은 성질을 가지고 flexible이 가능한 성질을 가지고 있다. 김 박사는 투명 전도성 산화물에는 크게 전기전도성과 투과율을 높이는 이슈가 있다고 밝히며 디스플레이에 적용될 경우 전기전도성과 투과율이 특히 높아야 한다고 발표했다.

투명체에 있어서 요소들 사이의 굴절률이 다를 경우 투명체를 지나는 빛의 경로가 굴절되게 된다. 이 경우 투명하지만 뿌옇게 보이는 현상이 나타나는데 이 정도를 haze(혼탁도)라고 부른다. Haze는 정량화하여 투명체의 성능을 평가하는데 사용된다. 김박사는 태양전지는 내부 active material에 빛을 더 많이 전달해주기 위해 haze를 일부러 높이기도 하지만 디스플레이는 뿌옇게 보이면 이미지가 원래대로 보이지 않기 때문에 haze를 낮추어주어야 하며 이를 위해 투명 전도성 산화물의 표면 roughness를 낮추어 주어야 한다고 발표했다.

김 박사는 투명 전도성 산화물을 투명전극으로 적용할 때 온도와, 플렉시블 2가지 이슈가 있다고 밝혔다. ITO는 공정온도 300℃에서 전도성이 가장 좋고 ZnO는 약 200℃에서 전도성이 가장 좋다. 또한 투명 전도성 산화물은 어느 정도의 bending strain을 넘으면 channel crack이 나오고 여기서 더 구부려지면 crack이 끊어지면서 소자의 성능이 망가지게 된다. 김 박사는 “Bending strain을 높이기 위해서는 두께를 얇게 해야 하는데 이때 면저항이 높아지기 때문에 trade off 관계를 잘 따져 공정설계를 해야 한다.”고 발표했다.

투명 전극은 디스플레이와 태양전지, 터치패널, 조명 등에 적용될 수 있을 것으로 보이기 때문에 많은 개발이 필요하다. 김박사는 산화물은 투명전극재료로 오래 연구가 진행되었지만 차세대 재료와의 융합을 통해 더욱 다양한 가치를 창출할 수 있을 것으로 보인다고 하며 발표를 마쳤다.